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Abstract—In this paper, we propose a novel criterion for the
detection of weak m-ary signals. In the sense of minimizing the er-
ror probability, the proposed criterion is optimal when the signal
strength approaches zero. Based on the proposed criterion, a detec-
tion scheme for ultrawideband multiple access systems is proposed
and analyzed in the presence of impulsive interference. Numerical
results show that the proposed detector requires less complexity
than, and possesses almost the same performance as, the maxi-
mum likelihood detector. In impulsive interference, the proposed
detector also offers significant performance improvement over the
detector optimized for a Gaussian environment.

Index Terms—Locally optimum (LO), maximum likehood (ML),
ultrawideband (UWB), weak signal detection.

I. INTRODUCTION

W ITH SIGNIFICANT interest in developing low-power
communication systems, the importance of weak signal

detection keeps growing. When the signal is vanishingly small,
it is desirable to design a detector with optimum performance at
low signal-to-noise ratio (SNR), for which the locally optimum
(LO) criterion [1]–[3] can be used. The LO criterion is based on
the generalized Neyman–Pearson lemma [2] and, given the false
alarm probability, maximizes the detection probability when the
signal is of small amplitude. The LO criterion has been exten-
sively studied (e.g., [4]–[7]) because of the advantage of simple
detector structures and the almost optimal performance even at
large signal strength in many cases. On the other hand, since
the LO criterion is derived basically for the detection of binary
signals, it is not directly applicable in modern digital commu-
nication systems where the receiver should choose among three
or more hypotheses.

To overcome such a limit of the binary LO criterion, we pro-
pose a novel criterion that is directly useful for the detection of

Manuscript received July 2, 2004; revised December 19, 2004, and January
30, 2005. This work was supported by Korea Science and Engineering Foun-
dation (KOSEF) under Grant R01-2004-000-10019-0. The review of this paper
was coordinated by Dr. C. Tepedelenlioglu.

I. Song, J. Koo, and H. Kwon are with the Department of Electri-
cal Engineering, Korea Advanced Institute of Science and Technology
(KAIST), Daejeon, Korea (e-mail: i.song@ieee.org; jkoo@Sejong.kaist.ac.kr;
kwon@Sejong.kaist.ac.kr).

S. R. Park is with the School of Information, Communications, and Electron-
ics Engineering, the Catholic University of Korea (CUK), Bucheon, Korea.

S. R. Lee is with the Division of Information, Mokpo National University,
Muan, Korea.

B.-H. Chung is with the Mathematics Section, College of Science and Tech-
nology, Hongik University, Jochiweon, Korea.

Digital Object Identifier 10.1109/TVT.2005.858165

weak m-ary signals, thereby extending the binary LO criterion.
The proposed criterion results in simple detector structures in
non-Gaussian, impulsive noise environments, and is optimum
when the signals are of weak strengths. Here, unlike in the binary
LO criterion, the term “optimum” is in the sense of minimum
error probability.

We also address an application of the proposed criterion
in ultrawideband multiple access (UWB-MA) systems. The
UWB-MA systems operating in an extremely broad frequency
range from near dc to a few gigahertz should not interfere
with narrow-band communication systems operating in dedi-
cated bands while contending with a variety of interfering sig-
nals. These requirements necessitate the use of spread-spectrum
techniques and consequently result in signals of extraordinarily
small strength with a natural request for low power consump-
tion. Therefore, design of weak signal detectors for UWB-MA
systems is much more important than that for other communi-
cation systems.

In the UWB-MA systems, the sum of the multiple access
interference (MAI) and channel noise is modeled as impul-
sive interference [8] based on the impulse-like feature of UWB
pulses [9], [10] and actual measurements of the ambient chan-
nel noise [11]. The impulsive modeling has proved appropriate
when the number of users in the communication links is small,
and the central limit theorem cannot be applied. Clearly, due
to the impulsive environment in the UWB-MA systems, the
conventional detector optimized for the Gaussian environment
[the Gaussian-optimized (GO) detector] could experience se-
vere performance degradation in the UWB-MA systems.

Based on the novel criterion, we propose a new detector for
UWB-MA systems in the presence of impulsive interference.
We shall observe that the performance of the proposed detector
barely differs from that of the optimal detector despite the fact
that proposed detector is a low-complexity version of the optimal
detector. Computer simulations also show that the proposed
detector generally outperforms the Gaussian-optimized detector
in impulsive interference.

II. NOVEL CRITERION FOR WEAK m-ARY SIGNALS

A. Observation Model

Fig. 1 describes a demodulator decomposing the received
signal into an N -dimensional vector and a detector making a
decision on the transmitted signal in each symbol interval Ts .
Specifically, the received signal is correlated by a series of N
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Fig. 1. Demodulator and detector.

orthonormal basis functions {ψk (t)}N
k=1 in the demodulator,

the outputs of which are then used for the detector to make a
decision. It is assumed that the N basis functions span the signal
space. In other words, for any signal in the set {si(t)}M

i=1 of M ≥
2 possible signals, there exists a unique set {cik}N

k=1 of real
numbers such that si(t) =

∑N
k=1 cikψk (t). The dimensionality

N of the signal space will be equal to M if all the signals
{si(t)}M

i=1 are linearly independent; otherwise, we have N <
M .

Suppose a signal si(t) has passed through an additive channel
to produce the received signal

r(t) = θi s̃i(t) + n(t), 0 ≤ t ≤ Ts (1)

where n(t) is the sample function of the additive noise, θi =√∫ Ts

0 |si(t)|2 dt is the strength of si(t), and s̃i(t) represents
the unit energy version of si(t). Assume that the signal strength
θi can be expressed as

θi = θεi, i = 1, 2, . . . ,M (2)

where θ is the common factor of {θi}M
i=1, and {εi}M

i=1 are
non-negative proportionality constants. In essence, the signal
strengths {θi}M

i=1 can be controlled by θ.
The demodulator in Fig. 1 computes the projections {rk}N

k=1

of r(t) onto the N basis functions {ψk (t)}N
k=1 as

rk = θεisik + nk , k = 1, 2, . . . , N (3)

where

sik =
∫ Ts

0

s̃i(t)ψk (t) dt, k = 1, 2, . . . , N (4)

are the signal components, and nk =
∫ Ts

0 n(t)ψk (t) dt, k =
1, 2, . . . , N are the noise components. The demodulator out-
put vector r = (r1, r2, . . . , rN ) can be expressed as

r = θεisi + n (5)

where si = (si1, si2, . . . , siN ) is the vector of signal compo-
nents, and n = (n1, n2, . . . , nN ) is the vector of noise compo-
nents. Note that we have

N∑
k=1

s2
ik =

N∑
k=1

s2
ik

∫ Ts

0

|ψk (t)|2 dt

=
∫ Ts

0

(
N∑

k=1

sikψk (t)

) (
N∑

k=1

sikψk (t)

)
dt

=
∫ Ts

0

|s̃i(t)|2 dt

= 1. (6)
Four typical signaling schemes and the corresponding parame-
ters are shown in Appendix A.

B. Proposed Criterion

Suppose that the m-ary signals {si(t)}M
i=1 are equi-probable,

that is, the a priori probability of a signal being transmitted is
1/M . The probability Pe(θ) of symbol error is then given as

Pe(θ) = 1 − 1
M

M∑
i=1

∫
Di

p(r | si, θ) dr (7)

where Di is the N -dimensional decision region over which we
decide si(t) is sent, and p(r | si, θ) represents the conditional
probability density function (pdf) of r given that si(t) is trans-
mitted when the signal strength parameter is θ. Here, {Di}M

i=1 is
a partition of the N -dimensional space R

N . If θ = 0, p(r | si, 0)
is equal to pn(r) from (5), where pn( · ) denotes the pdf of n.
Thus, we have

Pe(0) = 1 − 1
M

M∑
i=1

∫
Di

p(r | si, 0) dr

= 1 − 1
M

∫
RN

pn(r) dr

= 1 − 1
M

(8)
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a constant independent of the criterion. Based on this observa-
tion, we have the following.

Proposition 1: When the signal strength approaches zero,
Pe(θ) is minimized if, for i = 1, 2, . . . ,M

Di =
{
r :

∂

∂θ
p(r | si, θ)

∣∣∣∣
θ=0

≥ ∂

∂θ
p(r | sj , θ)

∣∣∣∣
θ=0

, ∀j

}
.

(9)

Proof: Since

Pe(θ) ≈ Pe(0) + θ
∂

∂θ
Pe(θ)

∣∣∣∣
θ=0

(10)

a criterion minimizing (∂)/(∂θ)Pe(θ)|θ=0 would result in the
minimum Pe(θ) when θ is close to zero. Now, since

∂

∂θ
Pe(θ)

∣∣∣∣
θ=0

= − 1
M

M∑
i=1

(
∂

∂θ

∫
Di

p(r | si, θ) dr
)∣∣∣∣

θ=0

= − 1
M

M∑
i=1

∫
Di

(
∂

∂θ
p(r | si, θ)

∣∣∣∣
θ=0

)
dr (11)

(∂)/(∂θ)Pe(θ)|θ=0 is minimized if Di is as specified
in (9). Q.E.D

The decision region (9) tells us that Pe(θ) is minimized by
selecting si(t) if (∂)/(∂θ)p(r | si, θ)|θ=0 is larger than or equal
to (∂)/(∂θ)p(r | sj , θ)|θ=0 for all j when θ → 0.

Proposition 2: Let DP
i and DML

i be the decision regions of
the proposed and maximum-likelihood (ML) criteria, respec-
tively. Then

DP
i = lim

θ→0
DML

i . (12)

Proof: Since p(r | si, θ)=
∑∞

m=0(θ
m )(m!)·(∂m )/(∂θm )

p(r | si, θ)|θ=0, we have

DML
i = {r : p(r | si, θ) ≥ p(r | sj , θ), ∀j}

=
{
r :

∂

∂θ
p(r | si, θ)

∣∣∣∣
θ=0

+
θ

2
· ∂2

∂θ2
p(r | si, θ)

∣∣∣∣
θ=0

+ · · ·

≥ ∂

∂θ
p(r | sj , θ)

∣∣∣∣
θ=0

+
θ

2
· ∂2

∂θ2
p(r | sj , θ)

∣∣∣∣
θ=0

+ · · · , ∀j

}
(13)

from which we easily obtain (12). Q.E.D
An interesting property of the proposed criterion defined by

(9) is presented in the following proposition.
Proposition 3: If the joint pdf pn(x1, x2, . . . , xN ) of the

noise vector n is a unimodal function of ‖x‖2 =
∑N

k=1 x2
k with

the maximum at ‖x‖ = 0, then the proposed and ML criteria
result in the same decision region when the M -ary signals all
have the same energy (i.e., when εi = ε).

Proof: We are to prove that DML
i = DP

i . Now,
pn(x1, x2, . . . , xN ) can be rewritten as pn(x1, x2, . . . , xN ) =
fu (‖x‖2), where fu (x) is a unimodal function of x with the
peak at x = 0. Without loss of generality, we can assume that
(d)/(dx)fu (x) �= 0 for all x �= 0 and fu is symmetric. Then,
using p(r | si, θ) = pn(r − θεsi), we have

DML
i =

{
r : fu

(
‖r − θεsi‖2

)
≥ fu

(
‖r − θεsj‖2

)
, ∀j

}
=

{
r : ‖r − θεsi‖2 ≤ ‖r − θεsj‖2, ∀j

}
=

{
r :

N∑
k=1

(sik − sjk )rk ≥ 0, ∀j

}
. (14)

Now, the derivative of p(r | si, θ) with respect to θ is

∂

∂θ
p(r | si, θ)

∣∣∣∣
θ=0

=
d

d (‖r − θεsi‖2)
fu

(
‖r − θεsi‖2

)∣∣∣∣
θ=0

·
N∑

k=1

(−2εrksik ) (15)

at θ = 0. Since

d fu

(
‖r − θεsi‖2

)
d (‖r − θεsi‖2)

∣∣∣∣∣
θ=0

=
d fu

(
‖x‖2

)
d (‖x‖2)

∣∣∣∣∣
‖x‖2=‖r‖2

(16)

we get

DP
i =

{
r :

∂

∂θ
p(r | si, θ)

∣∣∣∣
θ=0

≥ ∂

∂θ
p(r | sj , θ)

∣∣∣∣
θ=0

, ∀j

}

=

{
r :

{
d

d (‖x‖2)
fu

(
‖x‖2

)∣∣∣∣
‖x‖2=‖r‖2

}

·
N∑

k=1

(−2εrksik )

≥
{

d

d (‖x‖2)
fu

(
‖x‖2

)∣∣∣∣
‖x‖2=‖r‖2

}

·
N∑

k=1

(−2εrksjk ), ∀j

}

=

{
r :

N∑
k=1

(sik − sjk )rk ≥ 0, ∀j

}
(17)

which is the same as DML
i . Q.E.D.

Proposition 3 essentially tells us a sufficient condition under
which the performance of the proposed and ML criteria is the
same, irrespective of the signal strength.

Corollary 1: In the additive white Gaussian noise (AWGN),
the proposed and ML criteria cause exactly the same decision
region when the m-ary signals have the same energy.
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Proof: The components of n are independent and iden-
tically distributed (i.i.d.) Gaussian variables. Clearly, the
joint pdf of n is a special case of pn( · ) prescribed in
Proposition 3. Q.E.D

For the phase shift keyed (PSK) signals, the observa-
tion vector r can be expressed as r = (θ cos(2πi/M) +
n1, θ sin(2πi/M) + n2) when si(t) is sent. Let the joint pdf
of n1 and n2 be the bivariate Cauchy pdf

f(x, y) =
γ

2π
· 1

(x2 + y2 + γ2)3/2
(18)

which satisfies the condition specified in Proposition 3. We can
easily obtain

DML
i = DP

i

= {r : r1 cos(2πi/M) + r2 sin(2πi/M)

≥ r1 cos(2πj/M) + r2 sin(2πj/M), ∀j} (19)

confirming Proposition 3.
The multivariate t-pdf [12]

pn(x1, x2, . . . , xN ) =
Γ((ν + N)/2)
(πν)N/2Γ(ν/2)

·
(

1 + ν−1
N∑

k=1

x2
k

)−(ν+N )/2

(20)

where ν > 0 denotes the degree of freedom, also satisfies the
condition in Proposition 2. Consequently, the proposed and
ML criteria will have the same decision region with a set
of equienergy signals. Note that (20) becomes a multivariate
Cauchy pdf when ν = 1. Still another class of pdfs satisfying
the conditions in Proposition 3 is the class of the symmetric
α-stable (SαS) pdf [8], which will be considered in some detail
in Section III.

C. Examples of the Decision Regions

We now obtain specific examples of the proposed decision
regions when the noise components {nk}N

k=1 are i.i.d. with
the Gaussian, Cauchy, t-, and logistic distributions. Here, the
Cauchy, t-, and logistic pdf belong to the class of heavy-tailed
pdfs (tails decaying at lower rate than those of the Gaussian
pdf) and have been used frequently in the modeling of impulsive
environments. In addition, the t-distribution arises naturally in
sampling from a Gaussian distributed population [3]. In each
case, the decision region of the proposed criterion is compared
with that of the ML criterion to help us gain insight into the
proposed criterion.

1) Detection in Gaussian Noise: For the common pdf

f(x) =
1√

2πσ2
e−

x 2

2σ 2 (21)

we have p(r | si, θ) = exp{−(1)/(2σ2)
∑N

k=1(rk − θεisik )}.
Thus, we can obtain

DML
i =

{
r :

N∑
k=1

(εisik − εj sjk )rk ≥
(
ε2i − ε2j

)
θ

2
, ∀j

}

(22)

using (6) and

DP
i =

{
r :

N∑
k=1

(εisik − εj sjk )rk ≥ 0, ∀j

}
. (23)

2) Detection in Cauchy Noise: For the common Cauchy pdf
with zero median

f(x) =
γ

π(x2 + γ2)
(24)

where γ > 0 is the dispersion parameter determining the spread
of the distribution [8], [13]. In this case, it is straightforward to
have

DML
i =

{
r :

N∏
k=1

(rk − θεj sjk )2 + γ2

(rk − θεisik )2 + γ2
≥ 1, ∀j

}
(25)

and

DP
i =

{
r :

N∑
k=1

(εisik − εj sjk )rk

r2
k + γ2

≥ 0, ∀j

}
. (26)

3) Detection in t-Distributed Noise: Let us now assume the
common pdf

f(x) =
Γ ((ν + 1)/2)√

πνΓ(ν/2)
(1 + x2/ν)−(ν+1)/2. (27)

After some steps, we obtain the decision regions

DML
i =

{
r :

N∏
k=1

1 + (rk − θεj sjk )2/ν

1 + (rk − θεisik )2/ν
≥ 1, ∀j

}
(28)

and

DP
i =

{
r :

N∑
k=1

(εisik − εj sjk )rk

1 + r2
k/ν

≥ 0, ∀j

}
. (29)

Note that (29) is essentially the same as (26): this is because
the Cauchy noise is a special case of the t-noise.

4) Detection in Logistic Noise: We can obtain

DML
i =

{
r :

N∏
k=1

ebθ(εi si k −εj sj k )

·
(
1 + e−b(rk −θεj sj k )

)2(
1 + e−b(rk −θεi si k )

)2 ≥ 1, ∀j

}
(30)

and

DP
i =

{
r :

N∑
k=1

(εisik − εj sjk )
1 − e−brk

1 + e−brk
≥ 0, ∀j

}

(31)

for the logistic pdf with zero mean

f(x) =
be−bx

(1 + e−bx)2
(32)

where b > 0 and the variance of the distribution is π2/(3b2).
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D. Discussion

In general, DML
i is dependent on θ as we have observed in (22)

and (25) for example, while DP
i does not depend on θ as we have

observed in (23) and (26). This implies that if we use the ML
criterion, the value of θ has to be estimated and the performance
of a detector with an inaccurate estimate of θ could deviate far
from the optimum. Without having to estimate the value of θ and
possessing simpler test statistics, the detector using the proposed
criterion requires less computational complexity in comparison
with the ML detector. In addition, we shall see in Section III
that the performance difference between the detectors using the
proposed and ML criteria is negligible.

Appendix B illustrates decision regions of the proposed and
ML criteria more specifically when the signaling schemes are
specified. It is observed that the proposed and ML criteria result
in the same decision regions for the PSK and orthogonal signals
in the Gaussian environment as expected from Corollary 1. We
can also observe that, depending on the interference model and
signaling scheme, the proposed and ML criteria might result in
the same decision regions, even when the conditions of Proposi-
tion 3 are not satisfied: The case of orthogonal signals in logistic
interference is one such example.

III. APPLICATION TO UWB-MA SYSTEMS

A. System Model

Assume that the users employ binary pulse position modu-
lation (PPM) in which the transmitted signals consist of a low
duty-cycle sequence of a large number of UWB pulses. The
duration Tq of the unit energy UWB pulse q(t) is only a very
small portion of the frame time (or pulse repetition period) Tf .
Since we focus on the detection structure after the demodula-
tion process, we are not concerned with the shape of the UWB
pulses.

The lth user’s signal for 0 ≤ t ≤ NsTf is one of the two
equiprobable signals

s
(l)
i (t) = θ̃

Ns −1∑
k=0

q
(
t − kTf − c

(l)
k Tc − d

(l)
i Tc/2

)
(33)

i = 1, 2. Here, Ns is the number of the UWB pulses modu-
lated by a given symbol, Ts = NsTf is the symbol duration,
θ̃ is the signal strength when a signal is transmitted, Tc is the
chip duration (Tc > 2Tq ), {c(l)

k }Ns −1
k=0 is the time-hopping se-

quence of the lth user having period Nc (i.e., 0 ≤ c
(l)
k ≤ Nh

and c
(l)
k+jNc

= c
(l)
k , for all integers k, j with Nh an integer),

d
(l)
1 = 0, and d

(l)
2 = 1. The frame time Tf is chosen to be suf-

ficiently large (Tf > NhTc + Tc) to reduce intersymbol and
intrasymbol interference caused by the delay spread. The dif-
ference Tf − (Nh + 1)Tc is called the guard interval. Note that
Nc is the theoretical maximum number of users who can be si-
multaneously active in the system. The descriptions given here
are illustrated in Figs. 2 and 3.

Fig. 2. Profile of a symbol duration, where Ts = Ns Tf is the symbol duration,
Tc is the chip duration, and Tf − (Nh + 1)Tc is the guard interval.

Fig. 3. Example of the signal waveform. (a) Unit energy UWB pulse q(t).

(b) lth user’s signals s
(l)
1 (t) and s

(l)
2 (t) for a symbol duration Ts = Ns Tf =

3Tf when Nc = 2, Nh = 1, Ns = 3, and (c
(l)
0 , c

(l)
1 ) = (1, 0).

When the UWB-MA system has Nu users (Nu ≤ Nc), the
received signal r(t) is given as

r(t) =
Nu∑
l=1

s(l)
rec(t) + ñ(t), (34)

where s
(l)
rec(t) is the lth user’s signal at the receiver, and ñ(t)

denotes the channel noise. Let us assume that there is no signal
distortion due to the propagation through the channel and that
the receiver is interested in determining the data {d(1)

i } sent by

the first user. Then, the received signal r(t) given that s
(1)
i (t) is

transmitted can be expressed as

r(t) = A1s
(1)
i (t − τ1) + n(t). (35)

In (35), τ1 represents the time delay between the transmitter of
the first user and the receiver, A1 models the attenuation of the
first user’s signal over the channel, and

n(t) =
Nu∑
l=2

s(l)
rec(t) + ñ(t) (36)

is the total interference against determining {d(1)
i }. On the right-

hand side of (36), the first term is the MAI due to other users,
and ñ(t) is the interference due to the channel noise.
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Assuming that τ1 has been estimated perfectly, the compo-
nents of the observation vector r = (r1, r2, . . . , r2Ns

) are ob-
tained through demodulation process as

r2k+1 =
∫ Tc

0

r
(
u + kTf + c

(1)
k Tc + τ1

)
q(u) du (37)

and

r2k+2 =
∫ Tc

0

r
(
u + kTf + c

(1)
k Tc + τ1

)
q

(
u − Tc

2

)
du

(38)

for k = 0, 1, . . . , Ns − 1, which can be obtained from Fig. 1
by letting Ts = NsTf ,N = 2Ns , and ψi(t) = q(t − QiTf −
c
(1)
k Tc − RiTc/2 − τ1) for i = 1, 2, . . . , N . Here, Qi and Ri are

the quotient and remainder of i when divided by 2, respectively.
Now, the detector is to choose between

H1 :
{

r2k+1 = θ + n2k+1

r2k+2 = n2k+2
(39)

and

H2 :
{ r2k+1 = n2k+1

r2k+2 = θ + n2k+2
(40)

for k = 0, 1, . . . , Ns − 1. Here, Hi denotes the hypothesis that
s
(1)
i (t) is transmitted, θ = A1θ̃, and

n2k+1 =
∫ Tc

0

n
(
u + kTf + c

(1)
k Tc + τ1

)
q(u) du (41)

and

n2k+2 =
∫ Tc

0

n
(
u + kTf + c

(1)
k Tc + τ1

)
q

(
u − Tc

2

)
du

(42)

are the interference components of the observation vector r.

B. Detectors for Impulsive Interference

In this section, we obtain specific expressions for the detectors
(decision regions) under some models of impulsive interference.

1) Detectors for Bivariate Isotropic SαS Interference: The
SαS distribution, an elegant model for impulsive interference,
has been tested with a variety of real data and found to match the
data with high fidelity [8], [12], [14]. Let {(n2k+1, n2k+2)}Ns −1

k=0

be i.i.d. bivariate random vectors, of which the common pdf of
n = (n2k+1, n2k+2) is the bivariate isotropic SαS (BISαS) pdf

fn (x, y) =




1
π2γ2/ α∑∞

k=1
2α k (−1)k −1

k !

·Γ2
(

αk
2 + 1

)
sin

(
kαπ
2

)
·
(√

x2+y2

γ1/ α

)−αk−2

, 0 < α ≤ 1

1
2παγ2/ α

∑∞
k=0

1
(k !)2 Γ

(
2k+2

α

)
·
(
−x2+y2

4γ2/ α

)k

, 1 ≤ α ≤ 2.

(43)

Clearly, n2k+1 and n2k+2 are correlated in general. In (43), the
dispersion parameter γ > 0 is related to the spread of the BISαS
pdf, and the characteristic exponent α, 0 < α ≤ 2 is related to
the heaviness of the tails of the BISαS pdf with a smaller value
indicating a heavier tail. It is shown in Appendix C that the two
infinite series in (43) result in the bivariate Cauchy pdf

fn (x, y) =
γ

2π(x2 + y2 + γ2)3/2
(44)

when α = 1, and the second infinite series in (43) becomes the
Gaussian pdf

fn (x, y) =
1

4πγ
exp

{
−x2 + y2

4γ

}
(45)

when α = 2. Under this Gaussian assumption, we get the deci-
sion region

DML,G
1 =

{
r :

Ns −1∑
k=0

(r2k+1 − r2k+2) ≥ 0

}
(46)

of the GO detector with the ML criterion. Clearly, DML,G
2 is

obtained by reversing the inequality in (46).
For the BISαS distributions, in general, the lack of closed-

form expressions prohibits the computations of optimum de-
tectors, except for the Gaussian and Cauchy distributions [11].
Thus, the optimum detector for the Cauchy distribution, the
Cauchy-optimized (CO) detector, has been used often as a use-
ful detector under the general impulsive pdf (43). After some
manipulations, we get

DML,C
1 =

{
r :

Ns −1∏
k=0

r2
2k+1 + (r2k+2 − θ)2 + γ2

(r2k+1 − θ)2 + r2
2k+2 + γ2

≥ 1

}

(47)

for the CO detector. Again, DML,C
2 is obtained by reversing the

inequality in (47). Clearly, the CO detector based on (47) should
first estimate the values of γ and θ for optimum performance.

Similarly, the decision region of the proposed detector under
the Cauchy environment is

DP,C
1 =

{
r :

Ns −1∑
k=0

r2k+1 − r2k+2

r2
2k+1 + r2

2k+2 + γ2
≥ 0

}
(48)

for which the estimation of θ is unnecessary. Although the pa-
rameter γ has still to be estimated, it can be obtained easily, for
example, by computing the sample mean and sample variance
of independent realizations of a BISαS process [15].

2) Detectors for SαS Interference: We now consider the case
where n2k+1 and n2k+2 are independent: It is now assumed that
{n2k+1}Ns

k=1 and {n2k+2}Ns

k=1 are all i.i.d. SαS random variables
with the pdf

f(x) =




1
πγ1/ α

∑∞
k=1

(−1)k −1

k ! Γ(αk + 1)

· sin
(

kαπ
2

) (
|x|

γ1/ α

)−αk−1

, 0 < α ≤ 1
1

παγ1/ α

∑∞
k=0

(−1)k

(2k)!

·Γ
(

2k+1
α

) (
x

γ1/ α

)2k

, 1 ≤ α ≤ 2.

(49)
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When α = 1, the ML criterion results in the decision region

DML,C
1 =

{
r :

Ns −1∏
k=0

(r2
2k+1 + γ2){(r2k+2 − θ)2 + γ2}

≥
Ns −1∏
k=0

(r2
2k+2 + γ2){(r2k+1 − θ)2 + γ2}

}
(50)

and the proposed criterion produces

DP,C
1 =

{
r :

Ns −1∑
k=0

(
r2k+1

r2
2k+1 + γ2

− r2k+2

r2
2k+2 + γ2

)
≥ 0

}
.

(51)

3) Detectors for Bivariate t-Distributed Interference: As-
sume the bivariate t-pdf [3], [12]

fn (x, y) =
1

2πσ2
√

1 − ρ2

(
1 +

x2 − 2ρxy + y2

σ2η(1 − ρ2)

)− η +2
2

(52)

for n = (n2k+1, n2k+2), where ρ is the correlation coefficient,
η denotes the rate of decay of the pdf with a smaller value
representing a more impulsive pdf, and σ2 determines (to-
gether with η) the variance. As η → ∞, (52) approaches the
bivariate Gaussian pdf. After some manipulations, it is straight-
forward to obtain (53) and (54), shown at the bottom of the
next page.

4) Detectors for Univariate t-Distributed Interference: As-
sume that {n2k+1}Ns

k=1 and {n2k+2}Ns

k=1 are i.i.d. t-distributed
random variables with the common pdf (27). Then, the ML cri-
terion results in (55), shown at the bottom of the next page, and
the proposed criterion gives

DP,t
1 =

{
r :

Ns −1∑
k=0

(
r2k+1

ν + r2
2k+1

− r2k+2

ν + r2
2k+2

)
≥ 0

}
. (56)

C. Numerical Results

Since the variance of the SαS distribution with α < 2 is not
defined, the standard SNR becomes meaningless. Instead, the
geometric SNR (G-SNR) can be used [16] to indicate the rel-
ative strength between the information-bearing signal and SαS
process. The G-SNR is defined as

G-SNR =
θ2

2C
−1+2/α
g γ2/α

(57)

where Cg = exp{lims→∞(
∑s

z=1(1)/(z) − ln s)} 
 1.78.
Note that for the Gaussian case (α = 2), the defini-
tion of G-SNR is consistent with that of the standard
SNR.

Figs. 4 and 5 show the performance characteristics of the
proposed (47), CO (47), and GO (46) detectors in the BISαS
interference environment with α = 1 and α = 2, respectively.
The G-SNR is shown in its square root value not in dB to
emphasize the low G-SNR regions in these figures (and in
Figs. 6–9). It is observed that when the CO detector has es-
timated the value of θ inaccurately, its performance would be
worse than that of the proposed detector even in the Cauchy

Fig. 4. Performance comparison of the proposed (48), CO (47), and GO (46)
detectors in the Cauchy (BISαS with α = 1) environment (44): The perfor-
mance of the CO detector with θ estimated inaccurately is also included.

Fig. 5. Performance comparison of the proposed (48), CO (47), and GO (46)
detectors in the Gaussian (BISαS with α = 2) environment (45).

environment. The performance of the proposed detector hardly
differs from that of the CO detector, especially when the G-
SNR is close to zero. Since the proposed criterion is guaranteed
to minimize the error probability when the signal strength ap-
proaches zero, the performance of the proposed detector could
become worse than that of the CO detector when the G-SNR is
high; however, the performance gap between the CO and pro-
posed detectors decreases as the number Ns of UWB pulses per
symbol increases. Thus, the two detectors will result in almost
the same performance for practical values (several hundreds)
of Ns . Clearly, although the GO detector outperforms the other
two detectors in the Gaussian environment (Fig. 5), it fails to
work adequately in the Cauchy environment (Fig. 4).
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Fig. 6. Performance comparison of the proposed (48), CO (47), and GO (46)
detectors when Ns = 100 in the BISαS environment (43) with α = 0.5, α =
1.3, and α = 1.9.

From the bit error rate curves of the three detectors for
Ns = 100 and various values of α as shown in Figs. 4–6, it
is clear that the proposed detector shows almost the same per-
formance as the CO detector. In addition, the proposed detector
outperforms the GO detector at all the values of the charac-
teristic exponents considered here, except for the case α = 2,
at which value the GO detector is obviously the optimum. For
smaller values of the characteristic exponent (that is, for more
impulsive interference cases), the GO detector becomes almost
useless, while the proposed and CO detectors maintain accept-
able performance.

Fig. 7 shows the performance difference among the pro-
posed (51), CO (50), and GO (46) detectors in the univari-
ate SαS interference model (49) when Ns = 100. As in the
BISαS environment, the proposed detector exhibits almost the
same performance as the CO detector and outperforms the GO
detector.

Fig. 8 shows how the three detectors specified by (46), (53),
and (54) perform in the bivariate t-distributed impulsive interfer-
ence (52) when ρ = 0.3 and Ns = 100. The proposed detector
shows practically the same performance as the optimum de-
tector and is superior to the GO detector. It is also observed
that such a general characteristic of the three detectors does not

Fig. 7. Performance comparison of the proposed (51), CO (50), and GO (46)
detectors with Ns = 100 in the SαS environment (49) when α = 0.5, α =
1, α = 1.3, α = 1.9, and α = 2.

Fig. 8. Performance comparison of the proposed (54), optimum (53) and
GO (46) detectors in the bivariate t-distributed impulsive model (52) when
Ns = 100 and ρ = 0.3.

change except η → ∞. Similar observations can be made also
in the case of the univariate t-distributed interference (27), as
shown in Fig. 9.

DML,t
1 =

{
r :

Ns −1∏
k=0

σ2η(1 − ρ2) + r2
2k+1 − 2ρr2k+1(r2k+2 − θ) + (r2k+2 − θ)2

σ2η(1 − ρ2) + (r2k+1 − θ)2 − 2ρr2k+2(r2k+1 − θ) + r2
2k+2

≥ 1

}
(53)

DP,t
1 =

{
r :

Ns −1∑
k=0

r2k+1 − r2k+2

σ2η(1 − ρ2) + r2
2k+1 − 2ρr2k+1r2k+2 + r2

2k+2

≥ 0

}
(54)

DML,t
1 =

{
r :

Ns −1∏
k=0

(1 + r2
2k+1/ν){1 + (r2k+2 − θ)2/ν}

(1 + r2
2k+2/ν){1 + (r2k+1 − θ)2/ν} ≥ 1

}
(55)
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Fig. 9. Performance comparison of the proposed (56), optimum (55), and
GO (46) detectors in the univariate t-distributed impulsive model (27) when
Ns = 100 and ρ = 0.3.

In short, it is anticipated that a specific choice of the impulsive
interference model does not, in general, have an influence on
the relative performance of the proposed, optimum, and GO de-
tectors. Note that the proposed detector offers almost the same
performance as the optimum detector with reduced complex-
ity and exhibits higher performance than the GO detector in
impulsive interference.

IV. CONCLUSION

The criterion proposed in this paper for weak m-ary signal
detection is designed to be optimum in the sense of minimizing
the error probability when the signals are of weak strengths.
It is shown that the proposed criterion has exactly the same
performance as the ML criterion if, for example, the joint pdf
of noise components is a monotonically decreasing function
of the sum of the noise components squared and the signals
are of equienergy. The proposed criterion relieves us from the
requirement of estimating the signal strength and, consequently,
results in simpler detector structures.

Based on the proposed criterion, a detector has been pro-
posed for the UWB-MA system in the presence of impulsive
interference. Numerical results demonstrate that the proposed
detector possesses less complexity than and almost the same
performance as the optimal detector and outperforms the GO
detector in impulsive interference.

We have assumed that signals experience linear distortion
in this paper. Further study based on the proposed criterion is
therefore anticipated in more general environment with nonlin-
ear distortion and/or time-varying frequency-selective fading.
For instance, employing a more realistic UWB channel model
[17], [18], rake receivers are analyzed under impulsive multipath
circumstances in [19]: The proposed criterion is again observed
to result in effective detectors in the UWB channel employed.

APPENDIX A

EXAMPLES OF SIGNALING SCHEMES

1) On-off keyed (OOK) signals (N = 1): When u(t) is a
unit energy signal with duration Ts [for example, u(t) =
cos(2πft)/

√
Ts with f � Ts], let s1(t) = θu(t) and

s2(t) = 0. We then have ψ1(t) = u(t), ε1 = 1, ε2 = 0,
s11 = 1, and s21 = 1.

2) PSK signals (N = 2): For i = 1, 2, . . . ,M , let si(t) =
(θ)/(

√
Ts) cos(2πft + 2πi/M), f � Ts . With ψ1(t) =

cos(2πft)/
√

Ts and ψ2(t) = − sin(2πft)/
√

Ts , we have
si1 = cos(2πi/M), si2 = sin(2πi/M), and εi = 1 for
i = 1, 2, . . . ,M .

3) QAM signals (N = 2): For i = 1, 2, . . . ,M , let si(t) =
(θAi1)/(

√
Ts) cos(2πft) + (θAi2)/(

√
Ts) sin(2πft),

f � Ts . Here, {(Ai1, Ai2)}M
i=1 represents M

points in the two dimensional real space. With
the basis functions ψ1(t) = cos(2πft)/

√
Ts

and ψ2(t) = sin(2πft)/
√

Ts , we have si1 =
Ai1/

√
A2

i1 + A2
i2, si2 = Ai2/

√
A2

i1 + A2
i2, and

εi =
√

A2
i1 + A2

i2 for i = 1, 2, . . . ,M .
4) Orthogonal signals [N = M ; the frequency shift keyed

(FSK) and PPM signals belong to this class]: When ũ(t)
is a unit energy signal with duration Ts/M , let

si(t) =
θ√
Ts

cos{2π(f + m∆f)t} (58)

with ∆f = 1/(2Ts) and f � Ts for the FSK signals, and

si(t) = θũ{t − (m − 1)Ts/M} (59)

for the PPM signals, where i = 1, 2, . . . ,M . With the
basis functions ψk (t) = cos{2π(f + k∆f)t}/

√
Ts, k =

1, 2, . . . , N for FSK signals and ψk (t) = ũ{t − (k −
1)Ts/N}, k = 1, 2, . . . , N for PPM signals, we have εi =
1, i = 1, 2, . . . ,M and sik = 1 for k = i and sik = 0 for
k �= i.

APPENDIX B

DECISION REGIONS FOR SPECIFIC SIGNALING SCHEMES

AND INTERFERENCE MODELS

The LO nonlinearity gLO( · ) [2], [3] for the Gaussian, univari-
ate Cauchy, and logistic noise are gG (x) = (x)(σ2), gC (x) =
(2x)/(x2 + γ2), and gL (x) = (b(1 − e−bx))/(1 + e−bx), re-
spectively. Then, from the results in Section II-C and the quan-
tities shown in Appendix A, we have the following results.

OOK Signals: In the Gaussian, univariate Cauchy, and logis-
tic noise, we have DML

1 = {r : r1 ≥ θ/2},DML
2 = {r : r1 ≤

θ/2},DP
1 = {r : r1 ≥ 0}, and DP

2 = {r : r1 ≤ 0}.
PSK Signals: We have

DP
i =

{
r : gLO(r1) cos

2πi

M
+ gLO(r2) sin

2πi

M

≥ gLO(r1) cos
2πj

M
+ gLO(r2) sin

2πj

M
, ∀j

}
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Fig. 10. Decision regions for 3PSK signaling in Gaussian noise.

Fig. 11. Decision regions for 4PSK signaling in Gaussian noise.

=
{
r :

{
cos

2πi

M
− cos

2πj

M

}
gLO(r1)

≥ −
{

sin
2πi

M
− sin

2πj

M

}
gLO(r2)

}
. (60)

Specifically, we have the following results.
a) In the Gaussian noise, we have (61), shown at the bottom

of the next page. Clearly, for BPSK signals (i.e., when
M = 2), DML

1 = DP
1 = {r : r1 ≤ 0} and DML

2 = DP
2 =

{r : r1 ≥ 0}. Decision regions for M = 3 and 4 are shown
in Figs. 10 and 11, respectively, where Ri is used to denote
DP

i .
b) In the univariate Cauchy noise, we have (62) and (63),

shown at the bottom of the next page. It is easy to see
that the decision regions for BPSK signals are the same
as those obtained for the Gaussian noise. When M = 3
and M = 4, the decision regions are as shown in Figs. 12
and 13, respectively. It should be noticed in these figures

Fig. 12. Decision regions for 3PSK signaling in the univariate Cauchy
noise when γ = 1 [the boundary curves are defined by

√
3r1(r2

1 + r2
2) ±

r2(r2
1 + γ2) = 0 when r1 > 0, which becomes

√
3r1 ± r2 = 0 near the point

(r1, r2) = (0, 0)). (a) 3PSK, Cauchy noise, small area. (b) 3PSK, Cauchy noise,
large area.

that the decision regions near the point (r1, r2) = (0, 0)
are almost the same as those for the Gaussian noise.

c) In the logistic noise, we have (64) and (65), shown at
the bottom of the next page. It is straightforward to show
that the decision regions when M = 2 and M = 4 in the
logistic noise are almost the same as those when M = 2
and M = 4 in the Gaussian noise, respectively. Fig. 14
shows the decision regions when M = 3. Again, note that
the decision regions near the point (r1, r2) = (0, 0) are
almost the same as those in the Gaussian noise.

QAM Signals: We have DP
i = {r :

∑2
k=1(Aik −

Ajk )gLO(rk ) ≥ 0,∀j}. Specifically, we have the follow-
ing results.

a) In the Gaussian noise, DML
i = {r :

∑2
k=1(Aik −

Ajk )rk ≥
∑2

k=1((A
2
ik − A2

jk )θ)/(2),∀j} and DP
i =

{r :
∑2

k=1(Aik − Ajk )rk ≥ 0,∀j}. Note that we have
DML

i = DP
i when A2

11 + A2
12 = A2

21 + A2
22.
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Fig. 13. Decision regions for 4PSK signaling in the univariate Cauchy noise
when γ = 1 [the boundary curves are r2 = ±r1 and r1r2 = ±γ2]. (a) 3PSK,
Cauchy noise, small area, (b) 3PSK, Cauchy noise, large area.

b) In the univariate Cauchy noise, DML
i = {r :

∏2
k=1((rk −

θAik )2 + γ2)/((rk − θAjk )2 + γ2) ≤ 1,∀j} and DP
i =

{r :
∑2

k=1((Aik − Ajk )rk )/(r2
k + γ2) ≥ 0,∀j}.

Fig. 14. Decision regions for 3PSK signaling in the logistic noise when
b = 1. [The boundary curves are defined by r2 = ± ln((

√
3 − 1) − (

√
3 +

1)er1 )/((
√

3 − 1)er1 − (
√

3 + 1)) when 0 ≤ r1 ≤ ln(
√

3 + 1)/(
√

3 − 1),
which becomes r2 ≈ ±((

√
3 − 1) − (

√
3 + 1)(1 + r1))/((

√
3 − 1)(1 +

r1) − (
√

3 + 1)) − 1 = ±(2
√

3r1)/(−2 + (
√

3 − 1)r1) ≈ ±
√

3r1 near the
point (r1, r2) = (0, 0).]

c) In the logistic noise, DML
i = {r :

∏2
k=1 ebθ(Ai k −Aj k )

((1 + e−b(rk −θAj k ))2)/((1 + e−b(rk −θAi k ))2) ≥ 1,∀j}
and DP

i = {r :
∑2

k=1(Aik − Ajk )(1 − e−brk )/(1 +
e−brk ) ≥ 0,∀j}.

Orthogonal Signals: For orthogonal signals, we generally
have DP

i = {r : gLO(ri) ≥ gLO(rj ),∀j}. Specifically, we have
the following results.

a) In the Gaussian and logistic noise, DML
i = DP

i = {r :
ri ≥ rj ,∀j}.

b) In the univariate Cauchy noise, DML
i = {r : (ri −

θ/2)/(r2
i + γ2) ≥ (rj − θ/2)/(r2

j + γ2),∀j} and DP
i =

{r : (ri)/(r2
i + γ2) ≥ (rj )/(r2

j + γ2),∀j}. An example
of the decision regions when M = 2 and γ = 1 is shown
in Fig. 15 Again, note that the decision regions near the

DML
i = DP

i =
{
r :

{
r2 cos

(i + j)π
M

− r1 sin
(i + j)π

M

}
sin

(i − j)π
M

≥ 0, ∀j

}
(61)

DML
i =

{
r :

((r1 − θ cos(2πi/M))2 + γ2)((r2 − θ sin(2πi/M))2 + γ2)
((r1 − θ cos(2πj/M))2 + γ2)((r2 − θ sin(2πj/M))2 + γ2)

≤ 1, ∀j

}
(62)

DP
i =

{
r :

{
r2

r2
2 + γ2

cos
(i + j)π

M
− r1

r2
1 + γ2

sin
(i + j)π

M

}
sin

(i − j)π
M

≥ 0, ∀j

}
(63)

DML
i =

{
r :

ebθ cos(2πi/M )(
1 + e−b(r1−θ cos(2πi/M ))

)2

ebθ sin(2πi/M )(
1 + e−b(r2−θ sin(2πi/M ))

)2

≥ ebθ cos(2πj/M )(
1 + e−b(r1−θ cos(2πj/M ))

)2

ebθ sin(2πj/M )(
1 + e−b(r2−θ sin(2πj/M ))

)2 , ∀j

}
(64)

DP
i =

{
r :

{
1 − ebr2

1 + ebr2
cos

(i + j)π
M

− 1 − ebr1

1 + ebr1
sin

(i + j)π
M

}
sin

(i − j)π
M

≥ 0, ∀j

}
(65)
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Fig. 15. Decision regions for orthogonal signaling in the univariate Cauchy
noise when M = 2 and γ = 1.

point (r1, r2) = (0, 0) are almost the same as those in the
Gaussian noise.

APPENDIX C

When α = 1, the first infinite series in (43) can be evaluated
as

1
π2γ2

∞∑
k=1

2k (−1)k−1

k!
Γ2(k/2 + 1)

· sin
(

kπ

2

)(√
x2 + y2

γ

)−k−2

=
1

2π(x2 + y2)
· γ√

x2 + y2

·
∞∑

k=0

(−1)k (2k + 1)!
22k (k!)2

(
γ2

x2 + y2

)k

=
γ

2π(x2 + y2 + γ2)3/2
(66)

where we have used Γ((2k + 3)/(2)) = ((2k +
1)!)/(22k+1k!)

√
π and

(1 + x)−3/2 =
∞∑

k=0

(−1)k (2k + 1)!
22k (k!)2

xk . (67)

The closed form expression (44) can also be obtained from the
second infinite series in (43) when α = 1. Specifically, again
using (67), we have

1
2πγ2

∞∑
k=0

Γ(2k + 2)
(k!)2

(
−x2 + y2

4γ2

)k

=
γ

2π(x2 + y2 + γ2)3/2
. (68)

When α = 2, the second infinite series in (43) becomes

1
4πγ

∞∑
k=0

Γ(k + 1)
(k!)2

(
−x2 + y2

4γ

)k

=
1

4πγ

∞∑
k=0

1
k!

(
−x2 + y2

4γ

)k

(69)

which is clearly the same as (45) since
∑∞

k=0((−x)k )/(k!) =
e−x .
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